首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   1篇
航空   30篇
航天技术   11篇
综合类   2篇
航天   19篇
  2019年   1篇
  2018年   1篇
  2015年   1篇
  2014年   4篇
  2012年   1篇
  2011年   3篇
  2010年   2篇
  2009年   3篇
  2008年   7篇
  2007年   6篇
  2006年   2篇
  2005年   3篇
  2004年   2篇
  2003年   4篇
  2000年   4篇
  1998年   1篇
  1996年   2篇
  1995年   2篇
  1992年   1篇
  1990年   2篇
  1989年   3篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1968年   1篇
排序方式: 共有62条查询结果,搜索用时 31 毫秒
41.
Plant lighting is a critical issue for cost effectiveness of bioregenerative systems. A plant lighting system using sunlight has been investigated and compared to systems using electrical lighting. Co-generation of electricity and use of in situ resource utilization (ISRU) were also considered. The fixed part of equivalent system mass was found to be reduced by factors of from 3.1 to 3.9, according to the mission assumptions. The time-dependent part of equivalent system mass was reduced by a smaller value, of about 1.05. Cost effectiveness of bioregeneration has been compared to the cost of shipping food. Break-even times for different Lunar and Mars missions were generally in the order of 2–10 years, and were quite sensitive to the assumptions. There is significant scope for future refinement of these values, and work is ongoing.  相似文献   
42.
NASA’s New Horizons (NH) Pluto–Kuiper Belt (PKB) mission was selected for development on 29 November 2001 following a competitive selection resulting from a NASA mission Announcement of Opportunity. New Horizons is the first mission to the Pluto system and the Kuiper belt, and will complete the reconnaissance of the classical planets. New Horizons was launched on 19 January 2006 on a Jupiter Gravity Assist (JGA) trajectory toward the Pluto system, for a 14 July 2015 closest approach to Pluto; Jupiter closest approach occurred on 28 February 2007. The ~400 kg spacecraft carries seven scientific instruments, including imagers, spectrometers, radio science, a plasma and particles suite, and a dust counter built by university students. NH will study the Pluto system over an 8-month period beginning in early 2015. Following its exploration of the Pluto system, NH will go on to reconnoiter one or two 30–50 kilometer diameter Kuiper Belt Objects (KBOs) if the spacecraft is in good health and NASA approves an extended mission. New Horizons has already demonstrated the ability of Principal Investigator (PI) led missions to use nuclear power sources and to be launched to the outer solar system. As well, the mission has demonstrated the ability of non-traditional entities, like the Johns Hopkins Applied Physics Laboratory (JHU/APL) and the Southwest Research Institute (SwRI) to explore the outer solar system, giving NASA new programmatic flexibility and enhancing the competitive options when selecting outer planet missions. If successful, NH will represent a watershed development in the scientific exploration of a new class of bodies in the solar system—dwarf planets, of worlds with exotic volatiles on their surfaces, of rapidly (possibly hydrodynamically) escaping atmospheres, and of giant impact derived satellite systems. It will also provide other valuable contributions to planetary science, including: the first dust density measurements beyond 18 AU, cratering records that shed light on both the ancient and present-day KBO impactor population down to tens of meters, and a key comparator to the puzzlingly active, former dwarf planet (now satellite of Neptune) called Triton which is in the same size class as the small planets Eris and Pluto.  相似文献   
43.
Certain meteoritical inclusions contain evidence for the existence of short-lived radioactivities such as 26Al and 41Ca at the time of their formation 4.566 billion years ago. Because the half-lives of these nuclides are so short, this evidence requires that no more than about a million years elapsed between their nucleosynthesis and their inclusion in cm-sized solids in the solar nebula. This abbreviated time span can be explained if these nuclides were synthesized in a stellar source such as a supernova, and were then transported across the interstellar medium by the resulting shock wave, which then triggered the gravitational collapse of the presolar molecular cloud core. Detailed 2D and 3D numerical hydrodynamical models are reviewed and show that such a scenario is consistent with the time scale constraint, and with the need to both trigger collapse and to inject shock-wave matter into the collapsing protostellar cloud and onto the protoplanetary disk formed by the collapse. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
44.
The New Horizons Spacecraft   总被引:1,自引:0,他引:1  
The New Horizons spacecraft was launched on 19 January 2006. The spacecraft was designed to provide a platform for seven instruments designated by the science team to collect and return data from Pluto in 2015. The design meets the requirements established by the National Aeronautics and Space Administration (NASA) Announcement of Opportunity AO-OSS-01. The design drew on heritage from previous missions developed at The Johns Hopkins University Applied Physics Laboratory (APL) and other missions such as Ulysses. The trajectory design imposed constraints on mass and structural strength to meet the high launch acceleration consistent with meeting the AO requirement of returning data prior to the year 2020. The spacecraft subsystems were designed to meet tight resource allocations (mass and power) yet provide the necessary control and data handling finesse to support data collection and return when the one-way light time during the Pluto fly-by is 4.5 hours. Missions to the outer regions of the solar system (where the solar irradiance is 1/1000 of the level near the Earth) require a radioisotope thermoelectric generator (RTG) to supply electrical power. One RTG was available for use by New Horizons. To accommodate this constraint, the spacecraft electronics were designed to operate on approximately 200 W. The travel time to Pluto put additional demands on system reliability. Only after a flight time of approximately 10 years would the desired data be collected and returned to Earth. This represents the longest flight duration prior to the return of primary science data for any mission by NASA. The spacecraft system architecture provides sufficient redundancy to meet this requirement with a probability of mission success of greater than 0.85. The spacecraft is now on its way to Pluto, with an arrival date of 14 July 2015. Initial in-flight tests have verified that the spacecraft will meet the design requirements.  相似文献   
45.
Solar radio bursts of spectral type II provide one of the chief diagnostics for the propagation of shocks through the solar corona. Radio data on the shocks are compared with computer models for propagation of fast-mode MHD shocks through the solar corona. Data on coronal shocks and high-velocity ejecta from solar flares are then discussed in terms of a general model consisting of three main velocity regimes.An invited paper presented at STIP Workshop on Shock Waves in the Solar Corona and Interplanetary Space, 15–19 June, 1980, Smolenice, Czechoslovakia.  相似文献   
46.
美国总统奥巴马乘坐最新设计的总统座驾风光就职,它那特别设计的总统座驾尤其引人注目。虽然奥巴马的新座驾可能是世界上最安全的汽车,而且长度达到6.3米,但它并不是最长的豪车,因为还有不少车比它更长。  相似文献   
47.
The NASA Astrobiology Roadmap provides guidance for research and technology development across the NASA enterprises that encompass the space, Earth, and biological sciences. The ongoing development of astrobiology roadmaps embodies the contributions of diverse scientists and technologists from government, universities, and private institutions. The Roadmap addresses three basic questions: How does life begin and evolve, does life exist elsewhere in the universe, and what is the future of life on Earth and beyond? Seven Science Goals outline the following key domains of investigation: understanding the nature and distribution of habitable environments in the universe, exploring for habitable environments and life in our own solar system, understanding the emergence of life, determining how early life on Earth interacted and evolved with its changing environment, understanding the evolutionary mechanisms and environmental limits of life, determining the principles that will shape life in the future, and recognizing signatures of life on other worlds and on early Earth. For each of these goals, Science Objectives outline more specific high-priority efforts for the next 3-5 years. These 18 objectives are being integrated with NASA strategic planning.  相似文献   
48.
Solar physics is about to undergo a revolution in the amount and quality of undistorted high resolution filter-grams and spectra available for study. Spacelab 2 will obtain UV and visible data comparable to the best obtained on Earth, but free of both blurring and image distortion. The goals of the Spacelab 2 flight are to collect data on the evolution of the solar magnetic and velocity fields on time scales of seconds to days. In the first part of the next decade, the 1.3 meter aperture Solar Optical Telescope will have sufficient spatial resolution to collect data on the scale of the solar density scale height [~ 100 km] which should be sufficient to study the basic physical processes in the solar atmosphere.  相似文献   
49.
The Mercury Dual Imaging System on the MESSENGER Spacecraft   总被引:1,自引:0,他引:1  
The Mercury Dual Imaging System (MDIS) on the MESSENGER spacecraft will provide critical measurements tracing Mercury’s origin and evolution. MDIS consists of a monochrome narrow-angle camera (NAC) and a multispectral wide-angle camera (WAC). The NAC is a 1.5° field-of-view (FOV) off-axis reflector, coaligned with the WAC, a four-element refractor with a 10.5° FOV and 12-color filter wheel. The focal plane electronics of each camera are identical and use a 1,024×1,024 Atmel (Thomson) TH7888A charge-coupled device detector. Only one camera operates at a time, allowing them to share a common set of control electronics. The NAC and the WAC are mounted on a pivoting platform that provides a 90° field-of-regard, extending 40° sunward and 50° anti-sunward from the spacecraft +Z-axis—the boresight direction of most of MESSENGER’s instruments. Onboard data compression provides capabilities for pixel binning, remapping of 12-bit data into 8 bits, and lossless or lossy compression. MDIS will acquire four main data sets at Mercury during three flybys and the two-Mercury-solar-day nominal mission: a monochrome global image mosaic at near-zero emission angles and moderate incidence angles, a stereo-complement map at off-nadir geometry and near-identical lighting, multicolor images at low incidence angles, and targeted high-resolution images of key surface features. These data will be used to construct a global image base map, a digital terrain model, global maps of color properties, and mosaics of high-resolution image strips. Analysis of these data will provide information on Mercury’s impact history, tectonic processes, the composition and emplacement history of volcanic materials, and the thickness distribution and compositional variations of crustal materials. This paper summarizes MDIS’s science objectives and technical design, including the common payload design of the MDIS data processing units, as well as detailed results from ground and early flight calibrations and plans for Mercury image products to be generated from MDIS data.  相似文献   
50.
The Mercury Laser Altimeter (MLA) is one of the payload science instruments on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission, which launched on August 3, 2004. The altimeter will measure the round-trip time of flight of transmitted laser pulses reflected from the surface of the planet that, in combination with the spacecraft orbit position and pointing data, gives a high-precision measurement of surface topography referenced to Mercury’s center of mass. MLA will sample the planet’s surface to within a 1-m range error when the line-of-sight range to Mercury is less than 1,200 km under spacecraft nadir pointing or the slant range is less than 800 km. The altimeter measurements will be used to determine the planet’s forced physical librations by tracking the motion of large-scale topographic features as a function of time. MLA’s laser pulse energy monitor and the echo pulse energy estimate will provide an active measurement of the surface reflectivity at 1,064 nm. This paper describes the instrument design, prelaunch testing, calibration, and results of postlaunch testing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号